Disc 104

Wednesday, February 24, 2021 11:01 AM

3.2 Problems

Problem 1. Use Neville's method to approximate $\sqrt{3}$ with the following functions and values:

- f(x) = 3^x and the values x₀ = −2, x₁ = −1, x₂ = 0, x₃ = 1, x₄ = 2
 f(x) = √x and the values x₀ = 0, x₁ = 1, x₂ = 2, x₃ = 4, x₄ = 5
- 2. $f(x) = \sqrt{x}$ and the values $x_0 = 0, x_1 = 1, x_2 = 2, x_3 = 4, x_4 = 5$

Problem 2. Let $P_3(x)$ be the interpolating polynomial for the data $(0, 0), (\underbrace{.5, y}, (1, 3), (2, 2), (1, 3), (2, 2), (1, 3), (2, 2), (2, 3), (2, 3), (2, 3), (3,$

$$P_{3}(x) = 6x^{5} + ax^{4} + bx = 7$$

$$y^{2} = \frac{4}{2^{5}} + \frac{a}{2^{4}} + \frac{b}{2}$$

$$y = (a + a + b)$$

$$z = (a + a + b)$$

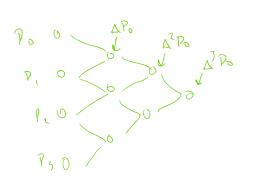
$$z = (a + a + 2 + b)$$

$$y = (a + a + b) = -4b$$

$$z = -4b$$

$$z = -4b$$

$$z = -4b$$


$$y = -4b$$

$$P_{0_{1}z_{1}s}(x) = P_{0_{1}z_{1}s}(x) (x - X_{1}) = P_{1_{1}z_{1}s}(x) (x - x_{*})$$

(Xo - X1)

3.3 Problems

Problem 3. Use Newton forward-difference formula to construct interpolating polynomials of degree one, two, and three for the following data. Approximate the specified value using each of the polynomials $P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \cdots (x - x_{n-1}), \quad (3.5)$ 1. f(.43) if $a_k = f[x_0, x_1, x_2, \ldots, x_k],$ 0 1 .25 1.64872 .75 4.48169 $f[x_i] = f(x_i).$ Problem 4. Show that the polynomial interpolating the following data has degree three. The remaining divided differences are defined recursively; the *first divided difference* of f with respect to x_i and x_{i+1} is denoted $f[x_i, x_{i+1}]$ and defined as $f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}.$ (3.8) $\binom{S}{k} := \frac{S(S-1)\cdots(S-k+1)}{k!}$ $P_n(x) = f(x_0) + \sum_{k=1}^{n} {s \choose k} \Delta^k f(x_0)$ $P_{2}(x) = f(x_{0}) + \begin{pmatrix} 5 \\ 1 \end{pmatrix} \Delta f(x_{0}) + \begin{pmatrix} 5 \\ 2 \end{pmatrix} \Delta^{2} f(x_{0})$ f SER $+\left(\begin{bmatrix} 5\\2 \end{bmatrix} \Delta^{1} \int (x_{s})$ $= P_i(x)$ (3) D3 fri. P1(x) = 2.12 Pr(x) $P_3(x) =$ P2(X) = 2. 376 P3(X) = 2.5606 \mathcal{O} 0 (, 07 The 2.72 4.5 $\triangle P_n = P_{n+1} - P_n$ $\Delta^{2}(P_{A}) = \Delta(AP_{A}) = AP_{n+1} - \Delta P_{A}$

$$= P_{n+2} - P_{n+1} - (P_{n+1} - P_n)$$